Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus.
نویسندگان
چکیده
In previous studies, neurons in the medial vestibular nucleus (MVN) were classified mainly into 2 types according to their intrinsic membrane properties in in vitro slice preparations. However, it has not been determined whether the classified neurons are excitatory or inhibitory ones. In the present study, to clarify the relationship between the chemical and electrophysiological properties of MVN neurons, we explored mRNAs of cellular markers for GABAergic (glutamic acid decarboxylase 65, 67, and neuronal GABA transporter), glutamatergic (vesicular glutamate transporter 1 and 2), glycinergic (glycine transporter 2), and cholinergic neurons (choline acetyltransferase and vesicular acetylcholine transporter) expressed in electrophysiologically characterized MVN neurons in rat brain stem slice preparations. For this purpose, we combined whole cell patch-clamp recording analysis with single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis. We examined the membrane properties such as afterhyperpolarization (AHP), firing pattern, and response to hyperpolarizing current pulse to classify MVN neurons. From the single-cell RT-PCR analysis, we found that GABAergic neurons consisted of heterogeneous populations with different membrane properties. Comparison of the membrane properties of GABAergic neurons with those of other neurons revealed that AHPs without slow components and a firing pattern with delayed spike generation (late spiking) were preferential properties of GABAergic neurons. On the other hand, most glutamatergic neurons formed a homogeneous subclass of neurons exhibiting AHPs with slow components, repetitive firings with constant interspike intervals (continuous spiking), and time-dependent inward rectification in response to hyperpolarizing current pulses. We also found a small number of cholinergic neurons with various membrane properties. These findings clarify the electrophysiological properties of excitatory and inhibitory neurons in the MVN, and the information about the preferential membrane properties may be useful for identifying GABAergic and glutamatergic MVN neurons electrophysiologically.
منابع مشابه
Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations.
The identification of neuron types within circuits is fundamental to understanding their relevance to behavior. In the vestibular nuclei, several classes of neurons have been defined in vivo on the basis of their activity during behavior, but it is unclear how those types correspond to neurons identified in slice preparations. By targeting recordings to neurons labeled in transgenic mouse lines...
متن کاملSepto-Hippocampo-Septal Loop and Memory Formation
The Cholinergic and GABAergic .bers of the medial septal/diagonal band of Broca (MS/DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven to play a role in learning and memory. In addition, the hippocampus has bidirectional connections with the septum so that to self-regulate of cholinergic input. The activity of septal and hippocampal neuron...
متن کاملFiring properties of GABAergic vs. non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents Abbreviated title: Balance of potassium currents in MVN neurons
Neural circuits are composed of diverse cell types whose firing properties reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely dissociated n...
متن کاملFiring properties of GABAergic versus non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents.
Neural circuits are composed of diverse cell types, the firing properties of which reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely disso...
متن کاملSimilar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons.
Sodium currents in fast firing neurons are tuned to support sustained firing rates >50-60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na curre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2004